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Abstract 

Extended parameter spaces were introduced by Kawaguchi et al. (1992) to define the geomet- 
rical distance between two probability distributions having different function forms. A statistical 
interpretation of the extended parameter spaces was introduced. In this paper, the property of the 
scalar curvature of extended parameter spaces is given. 
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I.  Introduction 

Traditionally, the parameter space in statistics has not been given a geometrical structure. 

It only means the set of  parameters that specifies probability distribution. However, in 1945 

Rao [ 1 ] introduced Riemannian structures into the statistical parameter space. Since then, 

many researchers have made geometrical approaches to the parameter space. In general, it is 

difficult to solve geodesic equations given by nonlinear differential equations derived from 

parameter spaces. Atkinson and Mitchel [2] solved geodesic equations for some distribution. 
Amari [3] has researched some relations between geometrical structures and statistical 
properties of  the spaces. Burbea and Rao [4,5] have studied some relations of  statistical 

divergences and statistical parameter spaces. 
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In these works, statistical parameter spaces are defined for the probability distributions 
belonging to the same family of probability distribution. When probability density functions 
have different function forms from one another, it is impossible to treat them in the same 
space. This defect has restricted wider possibilities of applications of statistical parameter 
spaces. Extended parameter spaces were introduced by Kawaguchi et al. [6], to define the 
geometrical distance between two probability distributions having different function forms. 
We introduced a metric in the parameter space in a way that enables us to retain the form 
of Fisher’s information matrix calculated from each marginal probability density function. 
In this paper we clarify the statistical significance of these geometrical concepts. 

2. Extended parameter spaces 

Letx = (x1,.x2,... , .P) be random variables, 0 = (0’) 02, . . . , On) real continuous 
parameters and h(x; 0) a joint probability density function of random variables X. Each 
probability density function of random variable xi may be different from one another. 
Fisher’s information matrix of h(x; 0) is as follows: 

z(e) = - 

(2.1) 

where D means the domain of integration of f(x; 0) with respect to X. It is well known 
that the quantity (2.1) is a Riemannian metric tensor [ 11. Therefore, the statistical parameter 
space of a joint density function constitutes a Riemannian space. 

Suppose that random variables of h(x; 0) are independent of one another. Then this 
density function is denoted by 

(2.2) 

where f(i) (xi; 80)) (i = 1,2, . . . , m) are marginal density functions of random variables 
xi (i = 1,2,..., m) and 8 is the set made of 8(t), 8(z), . . . , bfrnJ . Thus the metric tensor 
(2.1) reduces to 

8(1)(e(1)) 0 . . . 0 

i?ij = 
g(2) P(2)) 

. . 0 
(2.3) 
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where g(i)(O(i)), (i = 1,2,. . . , m) is Fisher’s information matrix derived from each 

marginal density function fu)(xi; 8u~) (i = 1.2, . . . , m), namely the metric tensor in 

each marginal density functions, respectively. 

The forms of these functions f(i) (xi; 8(i)) (i = 1,2, . . . , m) and the number of parame- 

ters are not always the same. The metric tensor (2.3) enables an investigation of a statistical 

parameter space of probability density functions whose function forms are different from 

one another. 

In the above discussion, it has been shown that the form of a metric tensor reduces to (2.3) 

when the random variables of a joint density function are independent of one another. Such 

a joint density function can be decomposed as the product of marginal density functions. 

Making use of this fact conversely, it is possible to make such a joint density from the product 

of some probability density functions. Accordingly, we can obtain the metric tensor derived 

from the product of probability density functions whose function forms are different from 

one another. Extended parameter spaces are interpreted as Riemannian space with a metric 

tensor made by this way. 

Each specified point in the extended parameter spaces can correspond to a probability 

distribution. We can consider the geodesic distance between these points as the distance 

between two probability distributions whose forms of density function are different from 

each other. 

3. Scalar curvature of extended parameter spaces 

There is an important geometrical property between the scalar curvature of the ex- 

tended parameter space and that of the parameter space derived from each marginal density 

function. 

Theorem. Let f(i)(xi; O(i)) (i = 1,2, . . . , m) be probability density functions of each in- 

dependent random variable xi (i = 1,2, . . . , m) and h (x; 0) the product of these functions, 

where O(i)(i = 1, 2, . . . , m)belongstoanopensubsetof IWn~,xis(x1,x2,...,xm)and8 

is(f3’,02,... , 0”) . Zf h(x; 0) has Fisher’s information matrix, then the scalar curvature of 

the extendedparameter space of h (x; 0) is the summation of the scalar curvature of the pa- 

rameter spaces, the subspaces of extended parameter space, derived from each probability 

density function. 

Proofi The metric tensor of the extended parameter space made of the product of m prob- 

ability density functions f(l) (x1; 8(l)) f(2) (x2; O(2)) . . fcm)(xm; 8(,,) is 

gij = 

8(l)(%)) 0 .-. O 
0 t?(2) P(2) ) 

. . 0 

0 . . . O g(m) te(m)) I Cm 5 n), 
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wh ere  g(i)(O(i)), (i = 1, 2 . . . . .  m) are Fisher's information matrix derived from each 

marginal density func t ion  f(i)(xi; O(i)) (i = 1, 2 . . . . .  m). 

Arranging the vectors of  parameters O(i) by the order of  index i, we obtain 

(0u), 0a) . . . . .  0<m)) 

= (0~1), 0~1 ) . . . . .  0rl;, 0~2,, 0~2 , . . . . .  0r22) . . . . .  O~,n),O~,n) . . . . .  0(nmm)). (3.1) 

NOW we use the following convention of indices. 

The convention o f  index: or, ~ . . . . .  o9 and a(i),/3(i) . . . . .  og(i) run from I to n (=  ~--]~jm= 1 n j )  

and from ~--]~}-11 nj + 1 to E} -1, n~ + n,,  respectively. The subindex i runs from 1 to m. 
The values of  both indices ot and ~(i) indicate the order of  parameters in the right-hand side 
of  (3.1). 

By making use of  the above convention of indices, the scalar curvature K is defined as 

where Fv ~ ~ is Christoffel symbols of  the second kind. Ft, '~ ,~ can be rewritten by the other 
index system as 

1 ~ (Ogg(k)~ Ogct(i)~ agc~{ilg(k ) ) 
#u) = -~g#U) _ _  + _ _  - -  r%~ ~/(k) ~ O00t(i) OOY(k) 008 ' 

where or(i), fl(j), Y(k) run from 1 to n, because i, j and k are not fixed. If  two of the three 
indices i, j and k are not equal, then ga,#~tk>, ga,#~k) and Ogc%~/O0 #<k) vanish. Therefore, 

only when all of  i, j and k are the same, F~h ~ #<i~ V~k) does not vanish. 
Thus (3.2) reduces to (3.3) 

gUXKvux v ~-. g~(l)~-(I) Kp(I)#(I)~.(I) P(I) -If- g/2(2)~'(2) __k"p(2)/.t(2)~.(2) p(2) 

+ " "  + g m")x~') Kv(,n)U(m)~.(m) v(m). (3.3) 

Each term of the right-hand side in (3.3) is a scalar curvature of the parameter spaces 

derived from probability density functions f (i) (xi ; O (i) ) ( i = 1, 2 . . . . .  m ) . Hence the scalar 

curvature of  extended parameter space is the sum of the scalar curvatures of  each of the 
subspaces. [] 

4. Conclusions 

We have given the interpretation of extended parameter spaces, i.e., the extended param- 
eter spaces are the statistical parameter spaces derived from a joint density function which 
consists of  a product of  density functions independent of  one another. 

In the conventional theory of  statistical parameter spaces based on Fisher's information 
matrix, it is impossible to calculate the distance between two probability distributions whose 
density function forms are different from each other. The extended parameter spaces enable 
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us to treat the distance between two probability density functions having different function 
forms. 

As is well known, a scalar curvature is an important geometrical property. It is proved that 
the scalar curvature in the extended parameter space is the summation of the curvatures of  
each one of its subspaces. This shows an interesting property of extended parameter spaces. 
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